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Atom Interferometer and its Applications


Key points: 

• Atomic particles as test 
masses


•  Quantum matter-wave 
interferometer for high 
sensitivity measurement


•  High intrinsic system 
stability


•  Laser cooling without 
cryogenics


Inertial measurements�
for navigation


• Inertial guidance without GPS

• Precision accelerometers/gyros

• Drag-free assistance


Precision measurements�
for advancement of science


•  Test of Einstein’s Equivalence Principle�
• Frame-dragging test of the General Relativity Theory�
• GW detector and spin-gravity coupling


Gravity sensors �
for gravity field monitoring �
and 3D subsurface structure mapping


• Earth science observatory and geodesy�
• Planetary gravity mapping and modeling�
• Underground structure and resource detection
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A cloud of laser trapped and 
cooled Cs atoms in magneto-

optical trap, with cloud 
fluorescence in false color. 

Illustration of Mach-Zehnder atom-wave 
interferometer, which is implemented by a 

sequence of laser pulses. 

Atom Interferometer Sensors 
− Light and atom-wave interferometers 



In the light pulse scheme, photon recoils are used to split and redirect atom beams
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 - Atom optics using light pulses  

Atom Interferometer Sensors 
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With over 106 detectable Cs atoms, 
the shot-noise limited SNR ~ 1000.

Per shot sensitivity ≈ 10-10/T2 m/s2,  
or about 10-11/T2 g.


Atomic Fountain 

Great enhancement of the 
sensitivity can be gained in 
microgravity in space! 
For example: in microgravity, 10-13 g 
Hz-1/2 possible with >10 s interrogation 
time.


- Atom interferometer as accelerometers 

Atom Interferometer Sensors 

π pulse


π/2 + π/2 pulses


t1


t2
 v2


v1


g


Δv= g Δt


Free falling 
atoms (clocks) 

mirror




- Differential accelerometer (gravity gradiometer) 
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Φ1= 2k(g1+a)T 2


Φ2= 2k(g2+a)T 2


ΔΦ12 = 2k (g1-g2) T 2


A gradiometer measures the difference in gravity, with 
the common local acceleration subtracted. 

g(x1) + a( ) − g(x2 ) + a( )[ ] / d = Δg12 /d

Many common mode errors are 
suppressed in the differential 
measurement to various degrees: 
vibration, laser phase error, AC 
stark shift, common optical path, 
magnetic fields, ….


Atom Interferometer Sensors 



- Advanced gravity mission for Earth and planetary sciences 

GRACE 
 Geodesy

 Earth and Planetary Interiors


–  Lithospheric thickness, composition

–  Lateral mantle density heterogeneity

–  Deep interior studies

–  Translational oscillation between core/mantle


 Earth and Planetary Climate Effects

–  Oceanic circulation

–  Tectonic and glacial movements

–  Tidal variations

–  Surface and ground water storage

–  Polar ice sheets

–  Earthquake monitoring
 GOCE 

-  Cold atoms as truly drag-free test masses 
-  Gravity gradiometer (better resolution) 
-  Simpler mission architecture (single spacecraft) 
-  More flexible orbits and satellite constellation 
  (more comprehensive data for data analyses) 

Atomic Interferometer Sensor Applications in Space 



- Tests of Equivalence Principle with atomic particles 
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mirror


ΦA= 2k(gA+a)T 2


ΦB= 2k(gB+a)T 2


ΔΦΑΒ = 2k (gA-gB) T 2


Atom Interferometer Sensors 

Atom-A

Atom-B


d = 0, overlapping atomic clouds


Δg = gA-gB = ?
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  Single axis differential acceleration of two co-located matter 
wave interferometers with different atomic species 


  Seek a violation of Einstein’s Equivalence Principle by 
improving the test limit by three orders of magnitude


  First non-trivial precision experiment of quantum particles 
under the influence of gravity, and may stimulate discussions of 
General Relativity in the framework of quantum mechanics. 




Unique Space Environment


•  Space offers freefall microgravity environment 

•  Large gravity variation possible

•  Large spatial extent and velocity variations

•  Minimal mechanical disturbance environment


MWXG

QuITE

MISS

Geodesic Explorer (?)




- From tabletop to transportable system 

JPL Atom Interferometer Sensor Development 

First tabletop experiment
 Transportable unit
2nd generation laboratory system




Design and actual atomic physics package


- Transportable atomic gradiometer instrument 

Atom Interferometer Sensor Development 

Single vacuum 
chamber


MOT and atomic 
source assembly
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Eight injection-locked amplifiers for two 
3D-MOTs and two 2D MOT sources.

Frequency tuning through phase locking 
of two master lasers.


Laser and optics system


- Laser and optical subsystem 

Absorption cells for locking


Automated injection locking tracking


Atom Interferometer Sensor Development 



loading rate 2-5 × 109 atoms in 
one second.


loading
 detection


Ramsey interferometer fringes 
showing the fringe contrast 
86% and the SNR 185.


- Experimental results 

Clock mode magnetic field-limited 
stability (no shields in place)


B field stability
Gradiometer signal


300 ms interrogation time (2T) each point


5x10-9g 
resolution


temperature


Atomic fountain launch 
temperature.


Atom Interferometer Sensor Development 



Accelerometer 

Phase 
modulator 

AI 

g


Raman laser 
beams 

mirror 

Accelerometer 
installed below mirror 

for phase-feed forward 
compensation  

Phase noise with 
electronic phase forward 

correction.


Phase noise without 
phase feedforward. 


- Dynamic Range of Atomic Sensor 
Atom Interferometer Sensor Development 



Universality of Free Fall (UFF) and Redshift in AI 

Courtesy H. Mueller


We propose a new concept of 
space UFF experiment between 
quantum and classical test 
masses to the precision  < 10-15 

a)   Test of EEP

b)   Redshift in AI
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Thoughts on possible collaborations 
−  Science objectives and significances 
−  Definition of the baseline mission concept and subsystem design 
−  Technology risk reductions 


